Riemannian manifolds are KKM spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Riemannian nonsymmetric spaces and flag manifolds

In this work we study riemannian metrics on flag manifolds adapted to the symmetries of these homogeneous nonsymmetric spaces(. We first introduce the notion of riemannian Γ-symmetric space when Γ is a general abelian finite group, the symmetric case corresponding to Γ = Z2. We describe and study all the riemannian metrics on SO(2n + 1)/SO(r1) × SO(r2) × SO(r3) × SO(2n + 1 − r1 − r2 − r3) for w...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Finite loop spaces are manifolds

One of the motivating questions for surgery theory was whether every finite H:space is homotopy equivalent to a Lie group. This question was answered in the negative by Hilton and Roitberg 's discovery of some counterexamples [18]. However, the problem remained whether every finite H-space is homotopy equivalent to a closed, smooth manifold. This question is still open, but in case the H-space ...

متن کامل

Riemannian manifolds , spaces of measures and the Gromov - Hausdorff distance ∗

We equip the space M(X) of all Borel probability measures an a compact Riemannian manifold X with a canonical distance function which induces the weak-∗ topology on M(X) and has the following property: the map X 7→ M(X) is Lipschitz continous with respect to the Gromov-Hausdorff distance on the space of all the (isometry classes of) compact metric spaces. Introduction Last century brought sever...

متن کامل

Spaces of Conformal Vector Fields on Pseudo-riemannian Manifolds

We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in the Theory of Nonlinear Analysis and its Application

سال: 2019

ISSN: 2587-2648

DOI: 10.31197/atnaa.513857